Master thesis proposal in scope of the ALGAESOLUTIONS project Universidade do Algarve Academic Year: 2021-2022

lame:
lumber:
mail:
Optimal light for algae cultivation
Aicroalgal Biotechnology
oão Varela, Universidade do Algarve, Campus de Gambelas,
varela@ualg.pt
eter Schulze, Associação Oceano Verde, Universidade do Algarve;
eterschulze@greencolab.com
ssociação Oceano Verde
Iniversidade do Algarve, Campus de Gambelas Edf. 12 - Gab. H8
005-139 Faro, Portugal <u>www.greencolab.com</u>
• Investigate optimal combinations of blue, red and green lights for
photosynthetic performance at specific light intensities and
culture concentrations in photobioreactors.
• Develop models to predict optimal light regimes for algal cultures.
released. The major bettlenget in photosystetrephic microaled
ultivation is the delivery of light with the right properties to drive
botosynthesis in all microalgal colls within a sulture. One of the major
roblems of algal cultivation are the cells at the periphery, which prevent
energy of light into the physician perpinety, which prevent
botosynthetic efficiency and productivity of the whole culture. To
motosynthetic enciency and productivity of the whole culture. To
nd light intensities need to be identified for a target species and culture
oncentration
Directive: This MSc thesis project will be part of the ALGAESOLUTIONS
roject and aims to develop models based on laboratory experiments that
redict the required light intensity of algal cultures at a given growth stage
hat can be applied to the facilities of industrial partners
mplementation: The photosynthetic oxygen evolution will be measured
n different microalgal cultures inside a photosynthetic chamber. Different
ED combinations will be tested at different light intensities and biomass
oncentrations. The photosynthetic oxygen evolution rates obtained will
e modelled and analysed. Secondly, to validate the model, cultures will
e grown indoors in batch cultures under light regimes that were
redicted from the model established. Samples will be collected to
alculate the growth rates, biomass productivities, maximum biomass

	concentration, yield and to determine photosynthetic efficiency of algal cultures and biochemical composition of the biomass. Outlook: The developed knowledge will be used to design smart LED
	lighting systems that are tailored to the need of a specific culture.
	Who: You should be interested in microalgal biotechnology, photosynthesis, algae cultivation and designing/building of experimental setups. You should also have some lab experience. If you are interest to write your thesis on this topic, contact <u>peterschulze@greencolab.com</u> .
	References:
	I. Blanken, W., Cuaresma, M., Wijffels, R.H. and Janssen, M., 2013.
	Cultivation of microalgae on artificial light comes at a cost. Algal
	Research, 2, pp.333-340.
	II. Ooms, M.D., Dinh, C.T., Sargent, E.H. and Sinton, D., 2016. Photon management for augmented photosynthesis. Nature Communications, 7, pp.1-13.
	III. Schulze, P.S., Barreira, L.A., Pereira, H.G., Perales, J.A. and Varela, J.C., 2014. Light emitting diodes (LEDs) applied to microalgal production. Trends in biotechnology, 32, pp.422-430.
	IV. Schulze, P.S., Brindley, C., Fernández, J.M., Rautenberger, R., Pereira, H., Wijffels, R.H. and Kiron, V., 2020. Flashing light does not improve photosynthetic performance and growth of green microalgae. Bioresource Technology Reports, 9, p.100367.
	Experimental start: November 2021
Schedule	Experimental end: June 2022